IMEX Runge–Kutta schemes for reaction–diffusion equations
نویسندگان
چکیده
منابع مشابه
Unconditional Stability for Multistep ImEx Schemes: Theory
This paper presents a new class of high order linear ImEx multistep schemes with large regions of unconditional stability. Unconditional stability is a desirable property of a time stepping scheme, as it allows the choice of time step solely based on accuracy considerations. Of particular interest are problems for which both the implicit and explicit parts of the ImEx splitting are stiff. Such ...
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملAnalysis of Asymptotic Preserving DG-IMEX Schemes for Linear Kinetic Transport Equations in a Diffusive Scaling
In this paper, some theoretical aspects will be addressed for the asymptotic preserving DG-IMEX schemes recently proposed in [10] for kinetic transport equations under a diffusive scaling. We will focus on the methods that are based on discontinuous Galerkin (DG) spatial discretizations with the P k polynomial space and a first order IMEX temporal discretization, and apply them to two linear mo...
متن کاملHigh order asymptotic preserving DG-IMEX schemes for discrete-velocity kinetic equations in a diffusive scaling
In this paper, we develop a family of high order asymptotic preserving schemes for some discrete-velocity kinetic equations under a diffusive scaling, that in the asymptotic limit lead to macroscopic models such as the heat equation, the porous media equation, the advectiondiffusion equation, and the viscous Burgers’ equation. Our approach is based on the micromacro reformulation of the kinetic...
متن کاملOn stability issues for IMEX schemes applied to 1D scalar hyperbolic equations with stiff reaction terms
The application of a Method of Lines to a hyperbolic PDE with source terms gives rise to a system of ODEs containing terms that may have very different stiffness properties. In this case, Implicit-Explicit Runge-Kutta (IMEX-RK) schemes are particularly useful as high order time integrators because they allow an explicit handling of the convective terms, which can be discretized using the highly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2008
ISSN: 0377-0427
DOI: 10.1016/j.cam.2007.04.003